Metamath Proof Explorer


Theorem fvvolioof

Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fvvolioof.f ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) )
fvvolioof.x ( 𝜑𝑋𝐴 )
Assertion fvvolioof ( 𝜑 → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑋 ) ) (,) ( 2nd ‘ ( 𝐹𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fvvolioof.f ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) )
2 fvvolioof.x ( 𝜑𝑋𝐴 )
3 1 ffund ( 𝜑 → Fun 𝐹 )
4 1 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
5 4 eqcomd ( 𝜑𝐴 = dom 𝐹 )
6 2 5 eleqtrd ( 𝜑𝑋 ∈ dom 𝐹 )
7 fvco ( ( Fun 𝐹𝑋 ∈ dom 𝐹 ) → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( vol ∘ (,) ) ‘ ( 𝐹𝑋 ) ) )
8 3 6 7 syl2anc ( 𝜑 → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( ( vol ∘ (,) ) ‘ ( 𝐹𝑋 ) ) )
9 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
10 ffun ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) )
11 9 10 ax-mp Fun (,)
12 11 a1i ( 𝜑 → Fun (,) )
13 1 2 ffvelrnd ( 𝜑 → ( 𝐹𝑋 ) ∈ ( ℝ* × ℝ* ) )
14 9 fdmi dom (,) = ( ℝ* × ℝ* )
15 13 14 eleqtrrdi ( 𝜑 → ( 𝐹𝑋 ) ∈ dom (,) )
16 fvco ( ( Fun (,) ∧ ( 𝐹𝑋 ) ∈ dom (,) ) → ( ( vol ∘ (,) ) ‘ ( 𝐹𝑋 ) ) = ( vol ‘ ( (,) ‘ ( 𝐹𝑋 ) ) ) )
17 12 15 16 syl2anc ( 𝜑 → ( ( vol ∘ (,) ) ‘ ( 𝐹𝑋 ) ) = ( vol ‘ ( (,) ‘ ( 𝐹𝑋 ) ) ) )
18 df-ov ( ( 1st ‘ ( 𝐹𝑋 ) ) (,) ( 2nd ‘ ( 𝐹𝑋 ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑋 ) ) , ( 2nd ‘ ( 𝐹𝑋 ) ) ⟩ )
19 18 a1i ( 𝜑 → ( ( 1st ‘ ( 𝐹𝑋 ) ) (,) ( 2nd ‘ ( 𝐹𝑋 ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑋 ) ) , ( 2nd ‘ ( 𝐹𝑋 ) ) ⟩ ) )
20 1st2nd2 ( ( 𝐹𝑋 ) ∈ ( ℝ* × ℝ* ) → ( 𝐹𝑋 ) = ⟨ ( 1st ‘ ( 𝐹𝑋 ) ) , ( 2nd ‘ ( 𝐹𝑋 ) ) ⟩ )
21 13 20 syl ( 𝜑 → ( 𝐹𝑋 ) = ⟨ ( 1st ‘ ( 𝐹𝑋 ) ) , ( 2nd ‘ ( 𝐹𝑋 ) ) ⟩ )
22 21 eqcomd ( 𝜑 → ⟨ ( 1st ‘ ( 𝐹𝑋 ) ) , ( 2nd ‘ ( 𝐹𝑋 ) ) ⟩ = ( 𝐹𝑋 ) )
23 22 fveq2d ( 𝜑 → ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑋 ) ) , ( 2nd ‘ ( 𝐹𝑋 ) ) ⟩ ) = ( (,) ‘ ( 𝐹𝑋 ) ) )
24 19 23 eqtr2d ( 𝜑 → ( (,) ‘ ( 𝐹𝑋 ) ) = ( ( 1st ‘ ( 𝐹𝑋 ) ) (,) ( 2nd ‘ ( 𝐹𝑋 ) ) ) )
25 24 fveq2d ( 𝜑 → ( vol ‘ ( (,) ‘ ( 𝐹𝑋 ) ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑋 ) ) (,) ( 2nd ‘ ( 𝐹𝑋 ) ) ) ) )
26 8 17 25 3eqtrd ( 𝜑 → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑋 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑋 ) ) (,) ( 2nd ‘ ( 𝐹𝑋 ) ) ) ) )