Metamath Proof Explorer


Theorem fz0

Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018)

Ref Expression
Assertion fz0 ( ( 𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ ) → ( 𝑀 ... 𝑁 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-nel ( 𝑀 ∉ ℤ ↔ ¬ 𝑀 ∈ ℤ )
2 df-nel ( 𝑁 ∉ ℤ ↔ ¬ 𝑁 ∈ ℤ )
3 1 2 orbi12i ( ( 𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ ) ↔ ( ¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ ) )
4 ianor ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ ) )
5 fzf ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ
6 5 fdmi dom ... = ( ℤ × ℤ )
7 6 ndmov ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ∅ )
8 4 7 sylbir ( ( ¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ∅ )
9 3 8 sylbi ( ( 𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ ) → ( 𝑀 ... 𝑁 ) = ∅ )