Metamath Proof Explorer


Theorem fz0sn0fz1

Description: A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion fz0sn0fz1 ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 0elfz ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) )
2 fzsplit ( 0 ∈ ( 0 ... 𝑁 ) → ( 0 ... 𝑁 ) = ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... 𝑁 ) ) )
3 0p1e1 ( 0 + 1 ) = 1
4 3 oveq1i ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 )
5 4 uneq2i ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... 𝑁 ) ) = ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) )
6 2 5 eqtrdi ( 0 ∈ ( 0 ... 𝑁 ) → ( 0 ... 𝑁 ) = ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) )
7 1 6 syl ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) )
8 0z 0 ∈ ℤ
9 fzsn ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } )
10 8 9 mp1i ( 𝑁 ∈ ℕ0 → ( 0 ... 0 ) = { 0 } )
11 10 uneq1d ( 𝑁 ∈ ℕ0 → ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) )
12 7 11 eqtrd ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) )