| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 2 |  | fzsplit | ⊢ ( 0  ∈  ( 0 ... 𝑁 )  →  ( 0 ... 𝑁 )  =  ( ( 0 ... 0 )  ∪  ( ( 0  +  1 ) ... 𝑁 ) ) ) | 
						
							| 3 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 4 | 3 | oveq1i | ⊢ ( ( 0  +  1 ) ... 𝑁 )  =  ( 1 ... 𝑁 ) | 
						
							| 5 | 4 | uneq2i | ⊢ ( ( 0 ... 0 )  ∪  ( ( 0  +  1 ) ... 𝑁 ) )  =  ( ( 0 ... 0 )  ∪  ( 1 ... 𝑁 ) ) | 
						
							| 6 | 2 5 | eqtrdi | ⊢ ( 0  ∈  ( 0 ... 𝑁 )  →  ( 0 ... 𝑁 )  =  ( ( 0 ... 0 )  ∪  ( 1 ... 𝑁 ) ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ... 𝑁 )  =  ( ( 0 ... 0 )  ∪  ( 1 ... 𝑁 ) ) ) | 
						
							| 8 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 9 |  | fzsn | ⊢ ( 0  ∈  ℤ  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 10 | 8 9 | mp1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 11 | 10 | uneq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 0 ... 0 )  ∪  ( 1 ... 𝑁 ) )  =  ( { 0 }  ∪  ( 1 ... 𝑁 ) ) ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ... 𝑁 )  =  ( { 0 }  ∪  ( 1 ... 𝑁 ) ) ) |