Step |
Hyp |
Ref |
Expression |
1 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
2 |
|
fzsplit |
⊢ ( 0 ∈ ( 0 ... 𝑁 ) → ( 0 ... 𝑁 ) = ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
3 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
4 |
3
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) |
5 |
4
|
uneq2i |
⊢ ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... 𝑁 ) ) = ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) |
6 |
2 5
|
eqtrdi |
⊢ ( 0 ∈ ( 0 ... 𝑁 ) → ( 0 ... 𝑁 ) = ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) ) |
7 |
1 6
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
10 |
8 9
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 0 ) = { 0 } ) |
11 |
10
|
uneq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ... 0 ) ∪ ( 1 ... 𝑁 ) ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) ) |