| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 2 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 3 |  | 1le3 | ⊢ 1  ≤  3 | 
						
							| 4 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 3 )  ↔  ( 1  ∈  ℕ0  ∧  3  ∈  ℕ0  ∧  1  ≤  3 ) ) | 
						
							| 5 | 1 2 3 4 | mpbir3an | ⊢ 1  ∈  ( 0 ... 3 ) | 
						
							| 6 |  | fzsplit | ⊢ ( 1  ∈  ( 0 ... 3 )  →  ( 0 ... 3 )  =  ( ( 0 ... 1 )  ∪  ( ( 1  +  1 ) ... 3 ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( 0 ... 3 )  =  ( ( 0 ... 1 )  ∪  ( ( 1  +  1 ) ... 3 ) ) | 
						
							| 8 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 9 | 8 | oveq2i | ⊢ ( 0 ... 1 )  =  ( 0 ... ( 0  +  1 ) ) | 
						
							| 10 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 11 |  | fzpr | ⊢ ( 0  ∈  ℤ  →  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } | 
						
							| 13 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 14 | 13 | preq2i | ⊢ { 0 ,  ( 0  +  1 ) }  =  { 0 ,  1 } | 
						
							| 15 | 9 12 14 | 3eqtri | ⊢ ( 0 ... 1 )  =  { 0 ,  1 } | 
						
							| 16 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 17 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 18 | 16 17 | oveq12i | ⊢ ( ( 1  +  1 ) ... 3 )  =  ( 2 ... ( 2  +  1 ) ) | 
						
							| 19 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 20 |  | fzpr | ⊢ ( 2  ∈  ℤ  →  ( 2 ... ( 2  +  1 ) )  =  { 2 ,  ( 2  +  1 ) } ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( 2 ... ( 2  +  1 ) )  =  { 2 ,  ( 2  +  1 ) } | 
						
							| 22 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 23 | 22 | preq2i | ⊢ { 2 ,  ( 2  +  1 ) }  =  { 2 ,  3 } | 
						
							| 24 | 18 21 23 | 3eqtri | ⊢ ( ( 1  +  1 ) ... 3 )  =  { 2 ,  3 } | 
						
							| 25 | 15 24 | uneq12i | ⊢ ( ( 0 ... 1 )  ∪  ( ( 1  +  1 ) ... 3 ) )  =  ( { 0 ,  1 }  ∪  { 2 ,  3 } ) | 
						
							| 26 | 7 25 | eqtri | ⊢ ( 0 ... 3 )  =  ( { 0 ,  1 }  ∪  { 2 ,  3 } ) |