| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 2 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 3 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 4 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 5 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 6 |  | 3pos | ⊢ 0  <  3 | 
						
							| 7 | 4 5 6 | ltleii | ⊢ 0  ≤  3 | 
						
							| 8 |  | eluz2 | ⊢ ( 3  ∈  ( ℤ≥ ‘ 0 )  ↔  ( 0  ∈  ℤ  ∧  3  ∈  ℤ  ∧  0  ≤  3 ) ) | 
						
							| 9 | 2 3 7 8 | mpbir3an | ⊢ 3  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 10 | 1 9 | eqeltri | ⊢ ( 2  +  1 )  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 11 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 12 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 13 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 14 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 15 |  | 2lt4 | ⊢ 2  <  4 | 
						
							| 16 | 13 14 15 | ltleii | ⊢ 2  ≤  4 | 
						
							| 17 |  | eluz2 | ⊢ ( 4  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  4  ∈  ℤ  ∧  2  ≤  4 ) ) | 
						
							| 18 | 11 12 16 17 | mpbir3an | ⊢ 4  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 19 |  | fzsplit2 | ⊢ ( ( ( 2  +  1 )  ∈  ( ℤ≥ ‘ 0 )  ∧  4  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 0 ... 4 )  =  ( ( 0 ... 2 )  ∪  ( ( 2  +  1 ) ... 4 ) ) ) | 
						
							| 20 | 10 18 19 | mp2an | ⊢ ( 0 ... 4 )  =  ( ( 0 ... 2 )  ∪  ( ( 2  +  1 ) ... 4 ) ) | 
						
							| 21 |  | fz0tp | ⊢ ( 0 ... 2 )  =  { 0 ,  1 ,  2 } | 
						
							| 22 | 1 | oveq1i | ⊢ ( ( 2  +  1 ) ... 4 )  =  ( 3 ... 4 ) | 
						
							| 23 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 24 | 23 | oveq2i | ⊢ ( 3 ... 4 )  =  ( 3 ... ( 3  +  1 ) ) | 
						
							| 25 |  | fzpr | ⊢ ( 3  ∈  ℤ  →  ( 3 ... ( 3  +  1 ) )  =  { 3 ,  ( 3  +  1 ) } ) | 
						
							| 26 | 3 25 | ax-mp | ⊢ ( 3 ... ( 3  +  1 ) )  =  { 3 ,  ( 3  +  1 ) } | 
						
							| 27 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 28 | 27 | preq2i | ⊢ { 3 ,  ( 3  +  1 ) }  =  { 3 ,  4 } | 
						
							| 29 | 24 26 28 | 3eqtri | ⊢ ( 3 ... 4 )  =  { 3 ,  4 } | 
						
							| 30 | 22 29 | eqtri | ⊢ ( ( 2  +  1 ) ... 4 )  =  { 3 ,  4 } | 
						
							| 31 | 21 30 | uneq12i | ⊢ ( ( 0 ... 2 )  ∪  ( ( 2  +  1 ) ... 4 ) )  =  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } ) | 
						
							| 32 | 20 31 | eqtri | ⊢ ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 } ) |