| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 2 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 3 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 4 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 5 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 6 |  | 3pos | ⊢ 0  <  3 | 
						
							| 7 | 4 5 6 | ltleii | ⊢ 0  ≤  3 | 
						
							| 8 |  | eluz2 | ⊢ ( 3  ∈  ( ℤ≥ ‘ 0 )  ↔  ( 0  ∈  ℤ  ∧  3  ∈  ℤ  ∧  0  ≤  3 ) ) | 
						
							| 9 | 2 3 7 8 | mpbir3an | ⊢ 3  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 10 | 1 9 | eqeltri | ⊢ ( 2  +  1 )  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 11 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 12 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 13 | 12 | nn0zi | ⊢ 5  ∈  ℤ | 
						
							| 14 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 15 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 16 |  | 2lt5 | ⊢ 2  <  5 | 
						
							| 17 | 14 15 16 | ltleii | ⊢ 2  ≤  5 | 
						
							| 18 |  | eluz2 | ⊢ ( 5  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  5  ∈  ℤ  ∧  2  ≤  5 ) ) | 
						
							| 19 | 11 13 17 18 | mpbir3an | ⊢ 5  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 20 |  | fzsplit2 | ⊢ ( ( ( 2  +  1 )  ∈  ( ℤ≥ ‘ 0 )  ∧  5  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 0 ... 5 )  =  ( ( 0 ... 2 )  ∪  ( ( 2  +  1 ) ... 5 ) ) ) | 
						
							| 21 | 10 19 20 | mp2an | ⊢ ( 0 ... 5 )  =  ( ( 0 ... 2 )  ∪  ( ( 2  +  1 ) ... 5 ) ) | 
						
							| 22 |  | fz0tp | ⊢ ( 0 ... 2 )  =  { 0 ,  1 ,  2 } | 
						
							| 23 | 1 | oveq1i | ⊢ ( ( 2  +  1 ) ... 5 )  =  ( 3 ... 5 ) | 
						
							| 24 |  | 3p2e5 | ⊢ ( 3  +  2 )  =  5 | 
						
							| 25 | 24 | eqcomi | ⊢ 5  =  ( 3  +  2 ) | 
						
							| 26 | 25 | oveq2i | ⊢ ( 3 ... 5 )  =  ( 3 ... ( 3  +  2 ) ) | 
						
							| 27 |  | fztp | ⊢ ( 3  ∈  ℤ  →  ( 3 ... ( 3  +  2 ) )  =  { 3 ,  ( 3  +  1 ) ,  ( 3  +  2 ) } ) | 
						
							| 28 | 3 27 | ax-mp | ⊢ ( 3 ... ( 3  +  2 ) )  =  { 3 ,  ( 3  +  1 ) ,  ( 3  +  2 ) } | 
						
							| 29 |  | eqid | ⊢ 3  =  3 | 
						
							| 30 |  | id | ⊢ ( 3  =  3  →  3  =  3 ) | 
						
							| 31 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 32 | 31 | a1i | ⊢ ( 3  =  3  →  ( 3  +  1 )  =  4 ) | 
						
							| 33 | 24 | a1i | ⊢ ( 3  =  3  →  ( 3  +  2 )  =  5 ) | 
						
							| 34 | 30 32 33 | tpeq123d | ⊢ ( 3  =  3  →  { 3 ,  ( 3  +  1 ) ,  ( 3  +  2 ) }  =  { 3 ,  4 ,  5 } ) | 
						
							| 35 | 29 34 | ax-mp | ⊢ { 3 ,  ( 3  +  1 ) ,  ( 3  +  2 ) }  =  { 3 ,  4 ,  5 } | 
						
							| 36 | 26 28 35 | 3eqtri | ⊢ ( 3 ... 5 )  =  { 3 ,  4 ,  5 } | 
						
							| 37 | 23 36 | eqtri | ⊢ ( ( 2  +  1 ) ... 5 )  =  { 3 ,  4 ,  5 } | 
						
							| 38 | 22 37 | uneq12i | ⊢ ( ( 0 ... 2 )  ∪  ( ( 2  +  1 ) ... 5 ) )  =  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 ,  5 } ) | 
						
							| 39 | 21 38 | eqtri | ⊢ ( 0 ... 5 )  =  ( { 0 ,  1 ,  2 }  ∪  { 3 ,  4 ,  5 } ) |