Metamath Proof Explorer


Theorem fz12pr

Description: An integer range between 1 and 2 is a pair. (Contributed by AV, 11-Jan-2023)

Ref Expression
Assertion fz12pr ( 1 ... 2 ) = { 1 , 2 }

Proof

Step Hyp Ref Expression
1 df-2 2 = ( 1 + 1 )
2 1 oveq2i ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) )
3 1z 1 ∈ ℤ
4 fzpr ( 1 ∈ ℤ → ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } )
5 3 4 ax-mp ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) }
6 1p1e2 ( 1 + 1 ) = 2
7 6 preq2i { 1 , ( 1 + 1 ) } = { 1 , 2 }
8 2 5 7 3eqtri ( 1 ... 2 ) = { 1 , 2 }