Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( ( 1 ... 𝑀 ) = ( 1 ... 𝑁 ) → ( ♯ ‘ ( 1 ... 𝑀 ) ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
2 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
3 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
4 |
2 3
|
eqeqan12d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ↔ 𝑀 = 𝑁 ) ) |
5 |
1 4
|
syl5ib |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 ... 𝑀 ) = ( 1 ... 𝑁 ) → 𝑀 = 𝑁 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑀 = 𝑁 → ( 1 ... 𝑀 ) = ( 1 ... 𝑁 ) ) |
7 |
5 6
|
impbid1 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 ... 𝑀 ) = ( 1 ... 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |