Step |
Hyp |
Ref |
Expression |
1 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
2 |
|
elnn0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
3 |
1 2
|
sylib |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
4 |
3
|
orcomd |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
5 |
|
hasheq0 |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
6 |
|
isfinite4 |
⊢ ( 𝐴 ∈ Fin ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |
7 |
|
bren |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
8 |
6 7
|
sylbb |
⊢ ( 𝐴 ∈ Fin → ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
9 |
8
|
biantrud |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
10 |
5 9
|
orbi12d |
⊢ ( 𝐴 ∈ Fin → ( ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ↔ ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) ) |
11 |
4 10
|
mpbid |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |