Metamath Proof Explorer


Theorem fz1fzo0m1

Description: Translation of one between closed and open integer ranges. (Contributed by Thierry Arnoux, 28-Jul-2020)

Ref Expression
Assertion fz1fzo0m1 ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( 𝑀 − 1 ) ∈ ( 0 ..^ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzmlbm ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
2 elfzel2 ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ℤ )
3 fzoval ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) )
4 2 3 syl ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) )
5 1 4 eleqtrrd ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( 𝑀 − 1 ) ∈ ( 0 ..^ 𝑁 ) )