Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) |
2 |
|
eqid |
⊢ ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) = ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) |
3 |
|
eqid |
⊢ ( ω ∩ ( ◡ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) = ( ω ∩ ( ◡ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
4 |
|
eqid |
⊢ OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑅 , 𝐴 ) |
5 |
1 2 3 4
|
fz1isolem |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |