Metamath Proof Explorer


Theorem fz1n

Description: A 1-based finite set of sequential integers is empty iff it ends at index 0 . (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion fz1n ( 𝑁 ∈ ℕ0 → ( ( 1 ... 𝑁 ) = ∅ ↔ 𝑁 = 0 ) )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
3 fzn ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < 1 ↔ ( 1 ... 𝑁 ) = ∅ ) )
4 1 2 3 sylancr ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ ( 1 ... 𝑁 ) = ∅ ) )
5 nn0lt10b ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ 𝑁 = 0 ) )
6 4 5 bitr3d ( 𝑁 ∈ ℕ0 → ( ( 1 ... 𝑁 ) = ∅ ↔ 𝑁 = 0 ) )