Metamath Proof Explorer


Theorem fz1ssfz0

Description: Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion fz1ssfz0 ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 )

Proof

Step Hyp Ref Expression
1 1e0p1 1 = ( 0 + 1 )
2 1 oveq1i ( 1 ... 𝑁 ) = ( ( 0 + 1 ) ... 𝑁 )
3 0z 0 ∈ ℤ
4 fzp1ss ( 0 ∈ ℤ → ( ( 0 + 1 ) ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) )
5 3 4 ax-mp ( ( 0 + 1 ) ... 𝑁 ) ⊆ ( 0 ... 𝑁 )
6 2 5 eqsstri ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 )