Description: Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fz1ssfz0 | ⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
2 | 1 | oveq1i | ⊢ ( 1 ... 𝑁 ) = ( ( 0 + 1 ) ... 𝑁 ) |
3 | 0z | ⊢ 0 ∈ ℤ | |
4 | fzp1ss | ⊢ ( 0 ∈ ℤ → ( ( 0 + 1 ) ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) | |
5 | 3 4 | ax-mp | ⊢ ( ( 0 + 1 ) ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
6 | 2 5 | eqsstri | ⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |