Metamath Proof Explorer


Theorem fz1sumconst

Description: The sum of N constant terms ( k is not free in C ). (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses fz1sumconst.n ( 𝜑𝑁 ∈ ℕ0 )
fz1sumconst.c ( 𝜑𝐶 ∈ ℂ )
Assertion fz1sumconst ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( 𝑁 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fz1sumconst.n ( 𝜑𝑁 ∈ ℕ0 )
2 fz1sumconst.c ( 𝜑𝐶 ∈ ℂ )
3 fzfi ( 1 ... 𝑁 ) ∈ Fin
4 fsumconst ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( ( ♯ ‘ ( 1 ... 𝑁 ) ) · 𝐶 ) )
5 3 2 4 sylancr ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( ( ♯ ‘ ( 1 ... 𝑁 ) ) · 𝐶 ) )
6 hashfz1 ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 )
7 1 6 syl ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 )
8 7 oveq1d ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) · 𝐶 ) = ( 𝑁 · 𝐶 ) )
9 5 8 eqtrd ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( 𝑁 · 𝐶 ) )