Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
2 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
3 |
1 2
|
jca |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
4 |
|
uztrn |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
6 |
5
|
ad2ant2r |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
7 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
8 |
3 6 7
|
jca32 |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
10 |
|
uztrn |
⊢ ( ( 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
12 |
11
|
ad2ant2l |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
13 |
9 12
|
jca |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
14 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
15 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
16 |
13 14 15
|
jca32 |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
17 |
8 16
|
impbii |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
18 |
|
elfzuzb |
⊢ ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
19 |
|
elfzuzb |
⊢ ( 𝐶 ∈ ( 𝐵 ... 𝐷 ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
20 |
18 19
|
anbi12i |
⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
21 |
|
elfzuzb |
⊢ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
22 |
|
elfzuzb |
⊢ ( 𝐶 ∈ ( 𝐴 ... 𝐷 ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
23 |
21 22
|
anbi12i |
⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
24 |
17 20 23
|
3bitr4i |
⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ) |