| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 2 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 3 |
1 2
|
jca |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 4 |
|
uztrn |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 5 |
4
|
ancoms |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 6 |
5
|
ad2ant2r |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 8 |
3 6 7
|
jca32 |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 10 |
|
uztrn |
⊢ ( ( 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 11 |
10
|
ancoms |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 12 |
11
|
ad2ant2l |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 13 |
9 12
|
jca |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 15 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 16 |
13 14 15
|
jca32 |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 17 |
8 16
|
impbii |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 18 |
|
elfzuzb |
⊢ ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 19 |
|
elfzuzb |
⊢ ( 𝐶 ∈ ( 𝐵 ... 𝐷 ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 20 |
18 19
|
anbi12i |
⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 21 |
|
elfzuzb |
⊢ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 22 |
|
elfzuzb |
⊢ ( 𝐶 ∈ ( 𝐴 ... 𝐷 ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 23 |
21 22
|
anbi12i |
⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 24 |
17 20 23
|
3bitr4i |
⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ) |