Metamath Proof Explorer


Theorem fzct

Description: A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion fzct ( 𝑁 ... 𝑀 ) ≼ ω

Proof

Step Hyp Ref Expression
1 fzssz ( 𝑁 ... 𝑀 ) ⊆ ℤ
2 zct ℤ ≼ ω
3 ssct ( ( ( 𝑁 ... 𝑀 ) ⊆ ℤ ∧ ℤ ≼ ω ) → ( 𝑁 ... 𝑀 ) ≼ ω )
4 1 2 3 mp2an ( 𝑁 ... 𝑀 ) ≼ ω