| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 2 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 3 |  | nn0addge1 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ≤  ( 𝑁  +  𝑁 ) ) | 
						
							| 4 | 2 3 | mpancom | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ≤  ( 𝑁  +  𝑁 ) ) | 
						
							| 5 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 6 | 5 | 2timesd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 7 | 4 6 | breqtrrd | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 8 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 9 |  | 0zd | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ℤ ) | 
						
							| 10 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 11 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ·  𝑁 )  ∈  ℤ ) | 
						
							| 12 | 10 8 11 | sylancr | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ·  𝑁 )  ∈  ℤ ) | 
						
							| 13 |  | elfz | ⊢ ( ( 𝑁  ∈  ℤ  ∧  0  ∈  ℤ  ∧  ( 2  ·  𝑁 )  ∈  ℤ )  →  ( 𝑁  ∈  ( 0 ... ( 2  ·  𝑁 ) )  ↔  ( 0  ≤  𝑁  ∧  𝑁  ≤  ( 2  ·  𝑁 ) ) ) ) | 
						
							| 14 | 8 9 12 13 | syl3anc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈  ( 0 ... ( 2  ·  𝑁 ) )  ↔  ( 0  ≤  𝑁  ∧  𝑁  ≤  ( 2  ·  𝑁 ) ) ) ) | 
						
							| 15 | 1 7 14 | mpbir2and | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 ... ( 2  ·  𝑁 ) ) ) |