| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( 𝑥  ∈  ( ( 𝑀 ... 𝑁 )  ∖  { 𝑀 } )  ↔  ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  ∧  ¬  𝑥  ∈  { 𝑀 } ) ) | 
						
							| 2 |  | elsng | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑥  ∈  { 𝑀 }  ↔  𝑥  =  𝑀 ) ) | 
						
							| 3 | 2 | necon3bbid | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  ( ¬  𝑥  ∈  { 𝑀 }  ↔  𝑥  ≠  𝑀 ) ) | 
						
							| 4 |  | fzne1 | ⊢ ( ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  ∧  𝑥  ≠  𝑀 )  →  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 5 | 3 4 | sylbida | ⊢ ( ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  ∧  ¬  𝑥  ∈  { 𝑀 } )  →  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 6 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 7 | 6 | uzidd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 |  | fzss1 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 10 | 7 8 9 | 3syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 11 | 10 | sselda | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑥  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 12 |  | elfz2 | ⊢ ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑥  ∧  𝑥  ≤  𝑁 ) ) ) | 
						
							| 13 | 6 | zred | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑥  ∧  𝑥  ≤  𝑁 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 15 |  | simp3 | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  𝑥  ∈  ℤ ) | 
						
							| 16 |  | zltp1le | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝑀  <  𝑥  ↔  ( 𝑀  +  1 )  ≤  𝑥 ) ) | 
						
							| 17 | 6 15 16 | syl2anr | ⊢ ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑀  <  𝑥  ↔  ( 𝑀  +  1 )  ≤  𝑥 ) ) | 
						
							| 18 | 17 | biimprd | ⊢ ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑀  +  1 )  ≤  𝑥  →  𝑀  <  𝑥 ) ) | 
						
							| 19 | 18 | a1d | ⊢ ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑥  ≤  𝑁  →  ( ( 𝑀  +  1 )  ≤  𝑥  →  𝑀  <  𝑥 ) ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑥  ≤  𝑁  →  ( ( 𝑀  +  1 )  ≤  𝑥  →  𝑀  <  𝑥 ) ) ) ) | 
						
							| 21 | 20 | com24 | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( ( 𝑀  +  1 )  ≤  𝑥  →  ( 𝑥  ≤  𝑁  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  <  𝑥 ) ) ) ) | 
						
							| 22 | 21 | imp42 | ⊢ ( ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑥  ∧  𝑥  ≤  𝑁 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  <  𝑥 ) | 
						
							| 23 | 14 22 | gtned | ⊢ ( ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑥  ∧  𝑥  ≤  𝑁 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑥  ≠  𝑀 ) | 
						
							| 24 | 23 | ex | ⊢ ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑥  ∧  𝑥  ≤  𝑁 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑥  ≠  𝑀 ) ) | 
						
							| 25 | 12 24 | sylbi | ⊢ ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑥  ≠  𝑀 ) ) | 
						
							| 26 | 25 | impcom | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑥  ≠  𝑀 ) | 
						
							| 27 |  | nelsn | ⊢ ( 𝑥  ≠  𝑀  →  ¬  𝑥  ∈  { 𝑀 } ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ¬  𝑥  ∈  { 𝑀 } ) | 
						
							| 29 | 11 28 | jca | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  ∧  ¬  𝑥  ∈  { 𝑀 } ) ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  ∧  ¬  𝑥  ∈  { 𝑀 } ) ) ) | 
						
							| 31 | 5 30 | impbid2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  ∧  ¬  𝑥  ∈  { 𝑀 } )  ↔  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 32 | 1 31 | bitrid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑥  ∈  ( ( 𝑀 ... 𝑁 )  ∖  { 𝑀 } )  ↔  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 33 | 32 | eqrdv | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀 ... 𝑁 )  ∖  { 𝑀 } )  =  ( ( 𝑀  +  1 ) ... 𝑁 ) ) |