Step |
Hyp |
Ref |
Expression |
1 |
|
fzsuc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
2 |
1
|
difeq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑁 + 1 ) } ) = ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) ) |
3 |
|
uncom |
⊢ ( { ( 𝑁 + 1 ) } ∪ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) |
4 |
|
ssun2 |
⊢ { ( 𝑁 + 1 ) } ⊆ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) |
5 |
|
incom |
⊢ ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) |
6 |
|
fzp1disj |
⊢ ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |
7 |
5 6
|
eqtri |
⊢ ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ∅ |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
9 |
|
uneqdifeq |
⊢ ( ( { ( 𝑁 + 1 ) } ⊆ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∧ ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) → ( ( { ( 𝑁 + 1 ) } ∪ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↔ ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) ) |
10 |
4 8 9
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( { ( 𝑁 + 1 ) } ∪ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↔ ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) ) |
11 |
3 10
|
mpbii |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) |
12 |
2 11
|
eqtr2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑁 + 1 ) } ) ) |