| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzsuc | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) | 
						
							| 2 | 1 | difeq1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑁  +  1 ) } )  =  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } ) ) | 
						
							| 3 |  | uncom | ⊢ ( { ( 𝑁  +  1 ) }  ∪  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) | 
						
							| 4 |  | ssun2 | ⊢ { ( 𝑁  +  1 ) }  ⊆  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) | 
						
							| 5 |  | incom | ⊢ ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } ) | 
						
							| 6 |  | fzp1disj | ⊢ ( ( 𝑀 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ | 
						
							| 7 | 5 6 | eqtri | ⊢ ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ ) | 
						
							| 9 |  | uneqdifeq | ⊢ ( ( { ( 𝑁  +  1 ) }  ⊆  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∧  ( { ( 𝑁  +  1 ) }  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ )  →  ( ( { ( 𝑁  +  1 ) }  ∪  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↔  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } )  =  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 10 | 4 8 9 | sylancr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( { ( 𝑁  +  1 ) }  ∪  ( 𝑀 ... 𝑁 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↔  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } )  =  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 11 | 3 10 | mpbii | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ∖  { ( 𝑁  +  1 ) } )  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 12 | 2 11 | eqtr2d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑁  +  1 ) } ) ) |