Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ) |
2 |
|
elfzel1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) |
3 |
2
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
4 |
3
|
zred |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
5 |
|
elfzel2 |
⊢ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝐾 ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
7 |
6
|
zred |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℝ ) |
8 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
9 |
8
|
zred |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
11 |
|
elfzle1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝑥 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝑥 ) |
13 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝑥 ≤ 𝐾 ) |
14 |
13
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝐾 ) |
15 |
4 10 7 12 14
|
letrd |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝐾 ) |
16 |
4 7 15
|
lensymd |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 ) |
17 |
1 16
|
sylbi |
⊢ ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 ) |
18 |
17
|
con2i |
⊢ ( 𝐾 < 𝑀 → ¬ 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ) |
19 |
18
|
eq0rdv |
⊢ ( 𝐾 < 𝑀 → ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |