Metamath Proof Explorer


Theorem fzdisj

Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion fzdisj ( 𝐾 < 𝑀 → ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) )
2 elfzel1 ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ )
3 2 adantl ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ )
4 3 zred ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℝ )
5 elfzel2 ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝐾 ∈ ℤ )
6 5 adantr ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℤ )
7 6 zred ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℝ )
8 elfzelz ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ )
9 8 zred ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ )
10 9 adantl ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ )
11 elfzle1 ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀𝑥 )
12 11 adantl ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀𝑥 )
13 elfzle2 ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝑥𝐾 )
14 13 adantr ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥𝐾 )
15 4 10 7 12 14 letrd ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀𝐾 )
16 4 7 15 lensymd ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 )
17 1 16 sylbi ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 )
18 17 con2i ( 𝐾 < 𝑀 → ¬ 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) )
19 18 eq0rdv ( 𝐾 < 𝑀 → ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ )