| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 2 |
|
elfzel1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 4 |
3
|
zred |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 5 |
|
elfzel2 |
⊢ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝐾 ∈ ℤ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
| 7 |
6
|
zred |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℝ ) |
| 8 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
| 9 |
8
|
zred |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 11 |
|
elfzle1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝑥 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝑥 ) |
| 13 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝑥 ≤ 𝐾 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝐾 ) |
| 15 |
4 10 7 12 14
|
letrd |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝐾 ) |
| 16 |
4 7 15
|
lensymd |
⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 ) |
| 17 |
1 16
|
sylbi |
⊢ ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 ) |
| 18 |
17
|
con2i |
⊢ ( 𝐾 < 𝑀 → ¬ 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ) |
| 19 |
18
|
eq0rdv |
⊢ ( 𝐾 < 𝑀 → ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |