Step |
Hyp |
Ref |
Expression |
1 |
|
fzennn.1 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
2 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 1 ... 𝑛 ) = ( 1 ... 0 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ 0 ) ) |
4 |
2 3
|
breq12d |
⊢ ( 𝑛 = 0 → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... 0 ) ≈ ( ◡ 𝐺 ‘ 0 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ... 𝑛 ) = ( 1 ... 𝑚 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ 𝑚 ) ) |
7 |
5 6
|
breq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑚 + 1 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... ( 𝑚 + 1 ) ) ≈ ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ◡ 𝐺 ‘ 𝑛 ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |
13 |
11 12
|
breq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 1 ... 𝑛 ) ≈ ( ◡ 𝐺 ‘ 𝑛 ) ↔ ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) ) |
14 |
|
0ex |
⊢ ∅ ∈ V |
15 |
14
|
enref |
⊢ ∅ ≈ ∅ |
16 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
17 |
|
0z |
⊢ 0 ∈ ℤ |
18 |
17 1
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) |
19 |
|
peano1 |
⊢ ∅ ∈ ω |
20 |
18 19
|
pm3.2i |
⊢ ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ ∅ ∈ ω ) |
21 |
17 1
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 0 |
22 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ ∅ ∈ ω ) → ( ( 𝐺 ‘ ∅ ) = 0 → ( ◡ 𝐺 ‘ 0 ) = ∅ ) ) |
23 |
20 21 22
|
mp2 |
⊢ ( ◡ 𝐺 ‘ 0 ) = ∅ |
24 |
15 16 23
|
3brtr4i |
⊢ ( 1 ... 0 ) ≈ ( ◡ 𝐺 ‘ 0 ) |
25 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
26 |
|
ovex |
⊢ ( 𝑚 + 1 ) ∈ V |
27 |
|
fvex |
⊢ ( ◡ 𝐺 ‘ 𝑚 ) ∈ V |
28 |
|
en2sn |
⊢ ( ( ( 𝑚 + 1 ) ∈ V ∧ ( ◡ 𝐺 ‘ 𝑚 ) ∈ V ) → { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } ) |
29 |
26 27 28
|
mp2an |
⊢ { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } |
30 |
29
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } ) |
31 |
|
fzp1disj |
⊢ ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ |
32 |
31
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ ) |
33 |
|
f1ocnvdm |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
34 |
18 33
|
mpan |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 0 ) → ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
35 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
36 |
34 35
|
eleq2s |
⊢ ( 𝑚 ∈ ℕ0 → ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
37 |
|
nnord |
⊢ ( ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω → Ord ( ◡ 𝐺 ‘ 𝑚 ) ) |
38 |
|
ordirr |
⊢ ( Ord ( ◡ 𝐺 ‘ 𝑚 ) → ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
39 |
36 37 38
|
3syl |
⊢ ( 𝑚 ∈ ℕ0 → ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
41 |
|
disjsn |
⊢ ( ( ( ◡ 𝐺 ‘ 𝑚 ) ∩ { ( ◡ 𝐺 ‘ 𝑚 ) } ) = ∅ ↔ ¬ ( ◡ 𝐺 ‘ 𝑚 ) ∈ ( ◡ 𝐺 ‘ 𝑚 ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ( ◡ 𝐺 ‘ 𝑚 ) ∩ { ( ◡ 𝐺 ‘ 𝑚 ) } ) = ∅ ) |
43 |
|
unen |
⊢ ( ( ( ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ∧ { ( 𝑚 + 1 ) } ≈ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ∧ ( ( ( 1 ... 𝑚 ) ∩ { ( 𝑚 + 1 ) } ) = ∅ ∧ ( ( ◡ 𝐺 ‘ 𝑚 ) ∩ { ( ◡ 𝐺 ‘ 𝑚 ) } ) = ∅ ) ) → ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ≈ ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ) |
44 |
25 30 32 42 43
|
syl22anc |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ≈ ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ) |
45 |
|
1z |
⊢ 1 ∈ ℤ |
46 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
47 |
46
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
48 |
35 47
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
49 |
48
|
eleq2i |
⊢ ( 𝑚 ∈ ℕ0 ↔ 𝑚 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
50 |
49
|
biimpi |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
51 |
|
fzsuc2 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) → ( 1 ... ( 𝑚 + 1 ) ) = ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
52 |
45 50 51
|
sylancr |
⊢ ( 𝑚 ∈ ℕ0 → ( 1 ... ( 𝑚 + 1 ) ) = ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( 1 ... ( 𝑚 + 1 ) ) = ( ( 1 ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
54 |
|
peano2 |
⊢ ( ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
55 |
36 54
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) |
56 |
55 18
|
jctil |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) ) |
57 |
17 1
|
om2uzsuci |
⊢ ( ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) + 1 ) ) |
58 |
36 57
|
syl |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) + 1 ) ) |
59 |
35
|
eleq2i |
⊢ ( 𝑚 ∈ ℕ0 ↔ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
60 |
59
|
biimpi |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
61 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) = 𝑚 ) |
62 |
18 60 61
|
sylancr |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) = 𝑚 ) |
63 |
62
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) ) + 1 ) = ( 𝑚 + 1 ) ) |
64 |
58 63
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( 𝑚 + 1 ) ) |
65 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ suc ( ◡ 𝐺 ‘ 𝑚 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑚 ) ) = ( 𝑚 + 1 ) → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑚 ) ) ) |
66 |
56 64 65
|
sylc |
⊢ ( 𝑚 ∈ ℕ0 → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑚 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑚 ) ) |
68 |
|
df-suc |
⊢ suc ( ◡ 𝐺 ‘ 𝑚 ) = ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) |
69 |
67 68
|
eqtrdi |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) = ( ( ◡ 𝐺 ‘ 𝑚 ) ∪ { ( ◡ 𝐺 ‘ 𝑚 ) } ) ) |
70 |
44 53 69
|
3brtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) ) → ( 1 ... ( 𝑚 + 1 ) ) ≈ ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
71 |
70
|
ex |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 1 ... 𝑚 ) ≈ ( ◡ 𝐺 ‘ 𝑚 ) → ( 1 ... ( 𝑚 + 1 ) ) ≈ ( ◡ 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
72 |
4 7 10 13 24 71
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) |