Metamath Proof Explorer


Theorem fzisfzounsn

Description: A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018)

Ref Expression
Assertion fzisfzounsn ( 𝐵 ∈ ( ℤ𝐴 ) → ( 𝐴 ... 𝐵 ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 eluzelz ( 𝐵 ∈ ( ℤ𝐴 ) → 𝐵 ∈ ℤ )
2 fzval3 ( 𝐵 ∈ ℤ → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
3 1 2 syl ( 𝐵 ∈ ( ℤ𝐴 ) → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
4 fzosplitsn ( 𝐵 ∈ ( ℤ𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) )
5 3 4 eqtrd ( 𝐵 ∈ ( ℤ𝐴 ) → ( 𝐴 ... 𝐵 ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) )