Metamath Proof Explorer


Theorem fzm1ndvds

Description: No number between 1 and M - 1 divides M . (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Assertion fzm1ndvds ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀𝑁 )

Proof

Step Hyp Ref Expression
1 elfzle2 ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ≤ ( 𝑀 − 1 ) )
2 1 adantl ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ≤ ( 𝑀 − 1 ) )
3 elfzelz ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ∈ ℤ )
4 3 adantl ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℤ )
5 nnz ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ )
6 5 adantr ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ )
7 zltlem1 ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 < 𝑀𝑁 ≤ ( 𝑀 − 1 ) ) )
8 4 6 7 syl2anc ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑁 < 𝑀𝑁 ≤ ( 𝑀 − 1 ) ) )
9 2 8 mpbird ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 < 𝑀 )
10 elfznn ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ∈ ℕ )
11 10 adantl ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℕ )
12 11 nnred ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℝ )
13 nnre ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ )
14 13 adantr ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ )
15 12 14 ltnled ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑁 < 𝑀 ↔ ¬ 𝑀𝑁 ) )
16 9 15 mpbid ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀𝑁 )
17 dvdsle ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀𝑁𝑀𝑁 ) )
18 6 11 17 syl2anc ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑀𝑁𝑀𝑁 ) )
19 16 18 mtod ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀𝑁 )