Step |
Hyp |
Ref |
Expression |
1 |
|
elfzle2 |
⊢ ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ≤ ( 𝑀 − 1 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ≤ ( 𝑀 − 1 ) ) |
3 |
|
elfzelz |
⊢ ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ∈ ℤ ) |
4 |
3
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℤ ) |
5 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
7 |
|
zltlem1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 < 𝑀 ↔ 𝑁 ≤ ( 𝑀 − 1 ) ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑁 < 𝑀 ↔ 𝑁 ≤ ( 𝑀 − 1 ) ) ) |
9 |
2 8
|
mpbird |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 < 𝑀 ) |
10 |
|
elfznn |
⊢ ( 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑁 ∈ ℕ ) |
11 |
10
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℕ ) |
12 |
11
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑁 ∈ ℝ ) |
13 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
15 |
12 14
|
ltnled |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁 ) ) |
16 |
9 15
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ≤ 𝑁 ) |
17 |
|
dvdsle |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) |
18 |
6 11 17
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) |
19 |
16 18
|
mtod |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ∥ 𝑁 ) |