Step |
Hyp |
Ref |
Expression |
1 |
|
fzn0 |
⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
eluz |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
3 |
1 2
|
syl5bb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑀 ≤ 𝑁 ) ) |
4 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
5 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
6 |
|
lenlt |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
8 |
3 7
|
bitr2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑁 < 𝑀 ↔ ( 𝑀 ... 𝑁 ) ≠ ∅ ) ) |
9 |
8
|
necon4bbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < 𝑀 ↔ ( 𝑀 ... 𝑁 ) = ∅ ) ) |