Metamath Proof Explorer


Theorem fzn

Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005)

Ref Expression
Assertion fzn ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < 𝑀 ↔ ( 𝑀 ... 𝑁 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 fzn0 ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ𝑀 ) )
2 eluz ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ↔ 𝑀𝑁 ) )
3 1 2 syl5bb ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑀𝑁 ) )
4 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
5 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
6 lenlt ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀𝑁 ↔ ¬ 𝑁 < 𝑀 ) )
7 4 5 6 syl2an ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ↔ ¬ 𝑁 < 𝑀 ) )
8 3 7 bitr2d ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑁 < 𝑀 ↔ ( 𝑀 ... 𝑁 ) ≠ ∅ ) )
9 8 necon4bbid ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < 𝑀 ↔ ( 𝑀 ... 𝑁 ) = ∅ ) )