Metamath Proof Explorer


Theorem fzn0

Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzn0 ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ𝑀 ) )

Proof

Step Hyp Ref Expression
1 n0 ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑀 ... 𝑁 ) )
2 elfzuz2 ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )
3 2 exlimiv ( ∃ 𝑥 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )
4 1 3 sylbi ( ( 𝑀 ... 𝑁 ) ≠ ∅ → 𝑁 ∈ ( ℤ𝑀 ) )
5 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
6 5 ne0d ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑀 ... 𝑁 ) ≠ ∅ )
7 4 6 impbii ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ𝑀 ) )