Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐾 ≠ 𝑀 ↔ ¬ 𝐾 = 𝑀 ) |
2 |
|
elfzuz2 |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
elfzp12 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
5 |
4
|
ibi |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
6 |
5
|
orcanai |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝐾 = 𝑀 ) → 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
7 |
1 6
|
sylan2b |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐾 ≠ 𝑀 ) → 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |