Metamath Proof Explorer


Theorem fzne1

Description: Elementhood in a finite set of sequential integers, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024)

Ref Expression
Assertion fzne1 ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐾𝑀 ) → 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐾𝑀 ↔ ¬ 𝐾 = 𝑀 )
2 elfzuz2 ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )
3 elfzp12 ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) )
4 2 3 syl ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) )
5 4 ibi ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 = 𝑀𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) )
6 5 orcanai ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝐾 = 𝑀 ) → 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )
7 1 6 sylan2b ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐾𝑀 ) → 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) )