| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne | ⊢ ( 𝐾  ≠  𝑀  ↔  ¬  𝐾  =  𝑀 ) | 
						
							| 2 |  | elfzuz2 | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 3 |  | elfzp12 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 5 | 4 | ibi | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 6 | 5 | orcanai | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  ¬  𝐾  =  𝑀 )  →  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 7 | 1 6 | sylan2b | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐾  ≠  𝑀 )  →  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) |