Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
⊢ ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴 ) ) |
2 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
4 |
|
zre |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
6 |
3 5
|
lenegd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐴 ) ) |
7 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
9 |
8 3
|
lenegd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝐵 ) ) |
10 |
6 9
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) ) |
11 |
1 10
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) ) |
12 |
|
elfz |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ... 𝐶 ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ) ) |
13 |
|
znegcl |
⊢ ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ ) |
14 |
|
znegcl |
⊢ ( 𝐶 ∈ ℤ → - 𝐶 ∈ ℤ ) |
15 |
|
znegcl |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) |
16 |
|
elfz |
⊢ ( ( - 𝐴 ∈ ℤ ∧ - 𝐶 ∈ ℤ ∧ - 𝐵 ∈ ℤ ) → ( - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) ) |
17 |
13 14 15 16
|
syl3an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) ) |
18 |
17
|
3com23 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) ) |
19 |
11 12 18
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ... 𝐶 ) ↔ - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ) ) |