Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuzb |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
2 |
|
elnnuz |
⊢ ( 𝐾 ∈ ℕ ↔ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
3 |
2
|
anbi1i |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
4 |
1 3
|
bitr4i |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
5 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
6 |
|
eluz |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
9 |
8
|
pm5.32da |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) ) |
10 |
4 9
|
syl5bb |
⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) ) |