Metamath Proof Explorer
Description: Expressing the singleton of 0 as a half-open integer range.
(Contributed by Stefan O'Rear, 15-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
2 |
1
|
oveq2i |
⊢ ( 0 ..^ 1 ) = ( 0 ..^ ( 0 + 1 ) ) |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
fzosn |
⊢ ( 0 ∈ ℤ → ( 0 ..^ ( 0 + 1 ) ) = { 0 } ) |
5 |
3 4
|
ax-mp |
⊢ ( 0 ..^ ( 0 + 1 ) ) = { 0 } |
6 |
2 5
|
eqtri |
⊢ ( 0 ..^ 1 ) = { 0 } |