Step |
Hyp |
Ref |
Expression |
1 |
|
fzo0addel |
⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) ) |
2 |
|
zcn |
⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) |
3 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) |
4 |
3
|
zcnd |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐶 ) → 𝐶 ∈ ℂ ) |
5 |
|
addcom |
⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐷 + 𝐶 ) = ( 𝐶 + 𝐷 ) ) |
6 |
2 4 5
|
syl2anr |
⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 + 𝐶 ) = ( 𝐶 + 𝐷 ) ) |
7 |
6
|
oveq2d |
⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ..^ ( 𝐷 + 𝐶 ) ) = ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) ) |
8 |
1 7
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐷 + 𝐶 ) ) ) |