Step |
Hyp |
Ref |
Expression |
1 |
|
elfzolt2 |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 < 𝐴 ) |
2 |
|
elfzoelz |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
2
|
zred |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
elfzoel2 |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐴 ∈ ℤ ) |
5 |
4
|
zred |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐴 ∈ ℝ ) |
6 |
3 5
|
ltnled |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵 ) ) |
7 |
1 6
|
mpbid |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ¬ 𝐴 ≤ 𝐵 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ¬ 𝐴 ≤ 𝐵 ) |
9 |
|
elfzonn0 |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 ∈ ℕ0 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℕ0 ) |
11 |
|
simpr |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
12 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℕ0 ∖ { 0 } ) ↔ ( 𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0 ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ( ℕ0 ∖ { 0 } ) ) |
14 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
15 |
13 14
|
eleqtrrdi |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℕ ) |
16 |
|
dvdsle |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
17 |
4 15 16
|
syl2an2r |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
18 |
8 17
|
mtod |
⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ¬ 𝐴 ∥ 𝐵 ) |
19 |
18
|
ex |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐵 ≠ 0 → ¬ 𝐴 ∥ 𝐵 ) ) |
20 |
19
|
necon4ad |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐴 ∥ 𝐵 → 𝐵 = 0 ) ) |
21 |
|
dvds0 |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∥ 0 ) |
22 |
4 21
|
syl |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐴 ∥ 0 ) |
23 |
|
breq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0 ) ) |
24 |
22 23
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐵 = 0 → 𝐴 ∥ 𝐵 ) ) |
25 |
20 24
|
impbid |
⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐴 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |