| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzolt2 | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐵  <  𝐴 ) | 
						
							| 2 |  | elfzoelz | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 3 | 2 | zred | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | elfzoel2 | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 5 | 4 | zred | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 | 3 5 | ltnled | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  ( 𝐵  <  𝐴  ↔  ¬  𝐴  ≤  𝐵 ) ) | 
						
							| 7 | 1 6 | mpbid | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  ¬  𝐴  ≤  𝐵 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  ¬  𝐴  ≤  𝐵 ) | 
						
							| 9 |  | elfzonn0 | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  𝐵  ≠  0 ) | 
						
							| 12 |  | eldifsn | ⊢ ( 𝐵  ∈  ( ℕ0  ∖  { 0 } )  ↔  ( 𝐵  ∈  ℕ0  ∧  𝐵  ≠  0 ) ) | 
						
							| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ( ℕ0  ∖  { 0 } ) ) | 
						
							| 14 |  | dfn2 | ⊢ ℕ  =  ( ℕ0  ∖  { 0 } ) | 
						
							| 15 | 13 14 | eleqtrrdi | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ℕ ) | 
						
							| 16 |  | dvdsle | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ∥  𝐵  →  𝐴  ≤  𝐵 ) ) | 
						
							| 17 | 4 15 16 | syl2an2r | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  ( 𝐴  ∥  𝐵  →  𝐴  ≤  𝐵 ) ) | 
						
							| 18 | 8 17 | mtod | ⊢ ( ( 𝐵  ∈  ( 0 ..^ 𝐴 )  ∧  𝐵  ≠  0 )  →  ¬  𝐴  ∥  𝐵 ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  ( 𝐵  ≠  0  →  ¬  𝐴  ∥  𝐵 ) ) | 
						
							| 20 | 19 | necon4ad | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  ( 𝐴  ∥  𝐵  →  𝐵  =  0 ) ) | 
						
							| 21 |  | dvds0 | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∥  0 ) | 
						
							| 22 | 4 21 | syl | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  𝐴  ∥  0 ) | 
						
							| 23 |  | breq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  ∥  𝐵  ↔  𝐴  ∥  0 ) ) | 
						
							| 24 | 22 23 | syl5ibrcom | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  ( 𝐵  =  0  →  𝐴  ∥  𝐵 ) ) | 
						
							| 25 | 20 24 | impbid | ⊢ ( 𝐵  ∈  ( 0 ..^ 𝐴 )  →  ( 𝐴  ∥  𝐵  ↔  𝐵  =  0 ) ) |