Metamath Proof Explorer


Theorem fzo0end

Description: The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzo0end ( 𝐵 ∈ ℕ → ( 𝐵 − 1 ) ∈ ( 0 ..^ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lbfzo0 ( 0 ∈ ( 0 ..^ 𝐵 ) ↔ 𝐵 ∈ ℕ )
2 fzoend ( 0 ∈ ( 0 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 0 ..^ 𝐵 ) )
3 1 2 sylbir ( 𝐵 ∈ ℕ → ( 𝐵 − 1 ) ∈ ( 0 ..^ 𝐵 ) )