Metamath Proof Explorer


Theorem fzo0n

Description: A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion fzo0n ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁𝑀 ↔ ( 0 ..^ ( 𝑁𝑀 ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
2 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
3 suble0 ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 𝑁𝑀 ) ≤ 0 ↔ 𝑁𝑀 ) )
4 1 2 3 syl2an ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁𝑀 ) ≤ 0 ↔ 𝑁𝑀 ) )
5 0z 0 ∈ ℤ
6 zsubcl ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁𝑀 ) ∈ ℤ )
7 fzon ( ( 0 ∈ ℤ ∧ ( 𝑁𝑀 ) ∈ ℤ ) → ( ( 𝑁𝑀 ) ≤ 0 ↔ ( 0 ..^ ( 𝑁𝑀 ) ) = ∅ ) )
8 5 6 7 sylancr ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁𝑀 ) ≤ 0 ↔ ( 0 ..^ ( 𝑁𝑀 ) ) = ∅ ) )
9 4 8 bitr3d ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁𝑀 ↔ ( 0 ..^ ( 𝑁𝑀 ) ) = ∅ ) )
10 9 ancoms ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁𝑀 ↔ ( 0 ..^ ( 𝑁𝑀 ) ) = ∅ ) )