Metamath Proof Explorer


Theorem fzo0n0

Description: A half-open integer range based at 0 is nonempty precisely if the upper bound is a positive integer. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzo0n0 ( ( 0 ..^ 𝐴 ) ≠ ∅ ↔ 𝐴 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 fzon0 ( ( 0 ..^ 𝐴 ) ≠ ∅ ↔ 0 ∈ ( 0 ..^ 𝐴 ) )
2 lbfzo0 ( 0 ∈ ( 0 ..^ 𝐴 ) ↔ 𝐴 ∈ ℕ )
3 1 2 bitri ( ( 0 ..^ 𝐴 ) ≠ ∅ ↔ 𝐴 ∈ ℕ )