| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℕ0 ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | nnge1 | ⊢ ( 𝑁  ∈  ℕ  →  1  ≤  𝑁 ) | 
						
							| 5 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 𝑁 )  ↔  ( 1  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  1  ≤  𝑁 ) ) | 
						
							| 6 | 2 3 4 5 | syl3anbrc | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 7 |  | fzosplit | ⊢ ( 1  ∈  ( 0 ... 𝑁 )  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ 1 )  ∪  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ 1 )  ∪  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 9 |  | fzo01 | ⊢ ( 0 ..^ 1 )  =  { 0 } | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 0 ..^ 1 )  =  { 0 } ) | 
						
							| 11 | 10 | uneq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 0 ..^ 1 )  ∪  ( 1 ..^ 𝑁 ) )  =  ( { 0 }  ∪  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 12 | 8 11 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 0 ..^ 𝑁 )  =  ( { 0 }  ∪  ( 1 ..^ 𝑁 ) ) ) |