Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
3 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
4 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
5 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 𝑁 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) |
6 |
2 3 4 5
|
syl3anbrc |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 0 ... 𝑁 ) ) |
7 |
|
fzosplit |
⊢ ( 1 ∈ ( 0 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 1 ) ∪ ( 1 ..^ 𝑁 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 1 ) ∪ ( 1 ..^ 𝑁 ) ) ) |
9 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 1 ) = { 0 } ) |
11 |
10
|
uneq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 ..^ 1 ) ∪ ( 1 ..^ 𝑁 ) ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) |
12 |
8 11
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) |