Metamath Proof Explorer


Theorem fzo0ss1

Description: Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018)

Ref Expression
Assertion fzo0ss1 ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 )

Proof

Step Hyp Ref Expression
1 1eluzge0 1 ∈ ( ℤ ‘ 0 )
2 fzoss1 ( 1 ∈ ( ℤ ‘ 0 ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) )
3 1 2 ax-mp ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 )