Metamath Proof Explorer


Theorem fzo0to42pr

Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017)

Ref Expression
Assertion fzo0to42pr ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } )

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 4nn0 4 ∈ ℕ0
3 2re 2 ∈ ℝ
4 4re 4 ∈ ℝ
5 2lt4 2 < 4
6 3 4 5 ltleii 2 ≤ 4
7 elfz2nn0 ( 2 ∈ ( 0 ... 4 ) ↔ ( 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4 ) )
8 1 2 6 7 mpbir3an 2 ∈ ( 0 ... 4 )
9 fzosplit ( 2 ∈ ( 0 ... 4 ) → ( 0 ..^ 4 ) = ( ( 0 ..^ 2 ) ∪ ( 2 ..^ 4 ) ) )
10 8 9 ax-mp ( 0 ..^ 4 ) = ( ( 0 ..^ 2 ) ∪ ( 2 ..^ 4 ) )
11 fzo0to2pr ( 0 ..^ 2 ) = { 0 , 1 }
12 4z 4 ∈ ℤ
13 fzoval ( 4 ∈ ℤ → ( 2 ..^ 4 ) = ( 2 ... ( 4 − 1 ) ) )
14 12 13 ax-mp ( 2 ..^ 4 ) = ( 2 ... ( 4 − 1 ) )
15 4m1e3 ( 4 − 1 ) = 3
16 df-3 3 = ( 2 + 1 )
17 15 16 eqtri ( 4 − 1 ) = ( 2 + 1 )
18 17 oveq2i ( 2 ... ( 4 − 1 ) ) = ( 2 ... ( 2 + 1 ) )
19 2z 2 ∈ ℤ
20 fzpr ( 2 ∈ ℤ → ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } )
21 19 20 ax-mp ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) }
22 18 21 eqtri ( 2 ... ( 4 − 1 ) ) = { 2 , ( 2 + 1 ) }
23 2p1e3 ( 2 + 1 ) = 3
24 23 preq2i { 2 , ( 2 + 1 ) } = { 2 , 3 }
25 14 22 24 3eqtri ( 2 ..^ 4 ) = { 2 , 3 }
26 11 25 uneq12i ( ( 0 ..^ 2 ) ∪ ( 2 ..^ 4 ) ) = ( { 0 , 1 } ∪ { 2 , 3 } )
27 10 26 eqtri ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } )