Step |
Hyp |
Ref |
Expression |
1 |
|
4z |
⊢ 4 ∈ ℤ |
2 |
|
fzoval |
⊢ ( 4 ∈ ℤ → ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) |
4 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
5 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
6 |
|
2cn |
⊢ 2 ∈ ℂ |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
6 7
|
addcomi |
⊢ ( 2 + 1 ) = ( 1 + 2 ) |
9 |
4 5 8
|
3eqtri |
⊢ ( 4 − 1 ) = ( 1 + 2 ) |
10 |
9
|
oveq2i |
⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... ( 1 + 2 ) ) |
11 |
|
1z |
⊢ 1 ∈ ℤ |
12 |
|
fztp |
⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) |
13 |
|
eqidd |
⊢ ( 1 ∈ ℤ → 1 = 1 ) |
14 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
15 |
14
|
a1i |
⊢ ( 1 ∈ ℤ → ( 1 + 1 ) = 2 ) |
16 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
17 |
16
|
a1i |
⊢ ( 1 ∈ ℤ → ( 1 + 2 ) = 3 ) |
18 |
13 15 17
|
tpeq123d |
⊢ ( 1 ∈ ℤ → { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) |
19 |
12 18
|
eqtrd |
⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } ) |
20 |
11 19
|
ax-mp |
⊢ ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } |
21 |
3 10 20
|
3eqtri |
⊢ ( 1 ..^ 4 ) = { 1 , 2 , 3 } |