| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoel1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 3 |
2
|
zred |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 4 |
|
elfzoelz |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 6 |
5
|
zred |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 7 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) |
| 8 |
7
|
zred |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℝ ) |
| 9 |
|
elfzole1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐴 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ≤ 𝐴 ) |
| 11 |
3 6 8 10
|
leadd1dd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐷 ) ) |
| 12 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 14 |
13
|
zred |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
| 15 |
|
elfzolt2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 < 𝐶 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 < 𝐶 ) |
| 17 |
6 14 8 16
|
ltadd1dd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) |
| 18 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ℤ ) |
| 19 |
4 18
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ℤ ) |
| 20 |
|
zaddcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 𝐷 ) ∈ ℤ ) |
| 21 |
1 20
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 𝐷 ) ∈ ℤ ) |
| 22 |
|
zaddcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + 𝐷 ) ∈ ℤ ) |
| 23 |
12 22
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + 𝐷 ) ∈ ℤ ) |
| 24 |
|
elfzo |
⊢ ( ( ( 𝐴 + 𝐷 ) ∈ ℤ ∧ ( 𝐵 + 𝐷 ) ∈ ℤ ∧ ( 𝐶 + 𝐷 ) ∈ ℤ ) → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) |
| 25 |
19 21 23 24
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) |
| 26 |
11 17 25
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ) |