Metamath Proof Explorer


Theorem fzodisjsn

Description: A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021)

Ref Expression
Assertion fzodisjsn ( ( 𝐴 ..^ 𝐵 ) ∩ { 𝐵 } ) = ∅

Proof

Step Hyp Ref Expression
1 disj1 ( ( ( 𝐴 ..^ 𝐵 ) ∩ { 𝐵 } ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ¬ 𝑥 ∈ { 𝐵 } ) )
2 elfzoelz ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ℤ )
3 2 zred ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ℝ )
4 elfzolt2 ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 < 𝐵 )
5 3 4 ltned ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥𝐵 )
6 5 neneqd ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ¬ 𝑥 = 𝐵 )
7 elsni ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 )
8 6 7 nsyl ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ¬ 𝑥 ∈ { 𝐵 } )
9 1 8 mpgbir ( ( 𝐴 ..^ 𝐵 ) ∩ { 𝐵 } ) = ∅