Metamath Proof Explorer


Theorem fzoend

Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoend ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ..^ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) )
2 elfzoel2 ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ )
3 fzoval ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) )
4 2 3 syl ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) )
5 1 4 eleqtrd ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) )
6 elfzuz3 ( 𝐴 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) → ( 𝐵 − 1 ) ∈ ( ℤ𝐴 ) )
7 5 6 syl ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( ℤ𝐴 ) )
8 eluzfz2 ( ( 𝐵 − 1 ) ∈ ( ℤ𝐴 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) )
9 7 8 syl ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) )
10 9 4 eleqtrrd ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ..^ 𝐵 ) )