Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) ) |
2 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ ) |
3 |
|
fzoval |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
5 |
1 4
|
eleqtrd |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
6 |
|
elfzuz3 |
⊢ ( 𝐴 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
8 |
|
eluzfz2 |
⊢ ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
10 |
9 4
|
eleqtrrd |
⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ..^ 𝐵 ) ) |