Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzof | ⊢ ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzssz | ⊢ ( 𝑚 ... ( 𝑛 − 1 ) ) ⊆ ℤ | |
| 2 | ovex | ⊢ ( 𝑚 ... ( 𝑛 − 1 ) ) ∈ V | |
| 3 | 2 | elpw | ⊢ ( ( 𝑚 ... ( 𝑛 − 1 ) ) ∈ 𝒫 ℤ ↔ ( 𝑚 ... ( 𝑛 − 1 ) ) ⊆ ℤ ) |
| 4 | 1 3 | mpbir | ⊢ ( 𝑚 ... ( 𝑛 − 1 ) ) ∈ 𝒫 ℤ |
| 5 | 4 | rgen2w | ⊢ ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( 𝑚 ... ( 𝑛 − 1 ) ) ∈ 𝒫 ℤ |
| 6 | df-fzo | ⊢ ..^ = ( 𝑚 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( 𝑚 ... ( 𝑛 − 1 ) ) ) | |
| 7 | 6 | fmpo | ⊢ ( ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( 𝑚 ... ( 𝑛 − 1 ) ) ∈ 𝒫 ℤ ↔ ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ ) |
| 8 | 5 7 | mpbi | ⊢ ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ |