Metamath Proof Explorer


Theorem fzofi

Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzofi ( 𝑀 ..^ 𝑁 ) ∈ Fin

Proof

Step Hyp Ref Expression
1 fzoval ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )
2 1 adantl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) )
3 fzfi ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ Fin
4 2 3 eqeltrdi ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) ∈ Fin )
5 fzof ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ
6 5 fdmi dom ..^ = ( ℤ × ℤ )
7 6 ndmov ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ∅ )
8 0fin ∅ ∈ Fin
9 7 8 eqeltrdi ( ¬ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) ∈ Fin )
10 4 9 pm2.61i ( 𝑀 ..^ 𝑁 ) ∈ Fin