Metamath Proof Explorer


Theorem fzofzp1

Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzofzp1 ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elfzoel1 ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ℤ )
2 uzid ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ𝐴 ) )
3 peano2uz ( 𝐴 ∈ ( ℤ𝐴 ) → ( 𝐴 + 1 ) ∈ ( ℤ𝐴 ) )
4 fzoss1 ( ( 𝐴 + 1 ) ∈ ( ℤ𝐴 ) → ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ⊆ ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
5 1 2 3 4 4syl ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ⊆ ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
6 1z 1 ∈ ℤ
7 fzoaddel ( ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 1 ∈ ℤ ) → ( 𝐶 + 1 ) ∈ ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) )
8 6 7 mpan2 ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) )
9 5 8 sseldd ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
10 elfzoel2 ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ )
11 fzval3 ( 𝐵 ∈ ℤ → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
12 10 11 syl ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) )
13 9 12 eleqtrrd ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) )