Step |
Hyp |
Ref |
Expression |
1 |
|
elfzoel1 |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ℤ ) |
2 |
|
uzid |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
3 |
|
peano2uz |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
4 |
|
fzoss1 |
⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ⊆ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
5 |
1 2 3 4
|
4syl |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ⊆ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
fzoaddel |
⊢ ( ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 1 ∈ ℤ ) → ( 𝐶 + 1 ) ∈ ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ) |
9 |
5 8
|
sseldd |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
10 |
|
elfzoel2 |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ ) |
11 |
|
fzval3 |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
13 |
9 12
|
eleqtrrd |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) |