Step |
Hyp |
Ref |
Expression |
1 |
|
fzofzp1 |
⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) |
2 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
3 |
|
eluzelz |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐶 ∈ ℤ ) |
4 |
|
elfzuz3 |
⊢ ( ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ ( 𝐶 + 1 ) ) ) |
5 |
|
eluzp1m1 |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ( ℤ≥ ‘ ( 𝐶 + 1 ) ) ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
7 |
|
elfzuzb |
⊢ ( 𝐶 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
8 |
2 6 7
|
sylanbrc |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐶 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
9 |
|
elfzel2 |
⊢ ( ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) → 𝐵 ∈ ℤ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐵 ∈ ℤ ) |
11 |
|
fzoval |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
13 |
8 12
|
eleqtrrd |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) → 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ) |
14 |
13
|
ex |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) → 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ) ) |
15 |
1 14
|
impbid2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) ) |