Metamath Proof Explorer


Theorem fzolb

Description: The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with M < N . This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate M e. ( ZZ>=N ) . (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzolb ( 𝑀 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzo2 ( 𝑀 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) )
2 eluzel2 ( 𝑀 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
3 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
4 2 3 impbii ( 𝑀 ∈ ( ℤ𝑀 ) ↔ 𝑀 ∈ ℤ )
5 4 3anbi1i ( ( 𝑀 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) )
6 1 5 bitri ( 𝑀 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) )