Metamath Proof Explorer


Theorem fzonlt0

Description: A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018)

Ref Expression
Assertion fzonlt0 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑀 < 𝑁 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
2 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
3 lenlt ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁𝑀 ↔ ¬ 𝑀 < 𝑁 ) )
4 1 2 3 syl2anr ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁𝑀 ↔ ¬ 𝑀 < 𝑁 ) )
5 fzon ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁𝑀 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) )
6 4 5 bitr3d ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑀 < 𝑁 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) )