Metamath Proof Explorer


Theorem fzonn0p1

Description: A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018)

Ref Expression
Assertion fzonn0p1 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0 )
2 nn0p1nn ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ )
3 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
4 3 ltp1d ( 𝑁 ∈ ℕ0𝑁 < ( 𝑁 + 1 ) )
5 elfzo0 ( 𝑁 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ↔ ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℕ ∧ 𝑁 < ( 𝑁 + 1 ) ) )
6 1 2 4 5 syl3anbrc ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) )