Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) ) |
2 |
|
peano2nn0 |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 + 1 ) ∈ ℕ0 ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → ( 𝐼 + 1 ) ∈ ℕ0 ) |
4 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
6 |
|
simp3 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → 𝐼 < 𝑁 ) |
7 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
8 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
9 |
|
1red |
⊢ ( 𝐼 < 𝑁 → 1 ∈ ℝ ) |
10 |
|
ltadd1 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐼 < 𝑁 ↔ ( 𝐼 + 1 ) < ( 𝑁 + 1 ) ) ) |
11 |
7 8 9 10
|
syl3an |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → ( 𝐼 < 𝑁 ↔ ( 𝐼 + 1 ) < ( 𝑁 + 1 ) ) ) |
12 |
6 11
|
mpbid |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → ( 𝐼 + 1 ) < ( 𝑁 + 1 ) ) |
13 |
|
elfzo0 |
⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ↔ ( ( 𝐼 + 1 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝐼 + 1 ) < ( 𝑁 + 1 ) ) ) |
14 |
3 5 12 13
|
syl3anbrc |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁 ) → ( 𝐼 + 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
15 |
1 14
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 + 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |