Metamath Proof Explorer


Theorem fzonnsub

Description: If K < N then N - K is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015) (Revised by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion fzonnsub ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑁𝐾 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 elfzolt2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 < 𝑁 )
2 elfzoelz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ℤ )
3 elfzoel2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ )
4 znnsub ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 < 𝑁 ↔ ( 𝑁𝐾 ) ∈ ℕ ) )
5 2 3 4 syl2anc ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐾 < 𝑁 ↔ ( 𝑁𝐾 ) ∈ ℕ ) )
6 1 5 mpbid ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑁𝐾 ) ∈ ℕ )